CS636: Shared Memory
Synchronization

Swarnendu Biswas

Semester 2018-2019-1|
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.



What is the desired property?

class Set {
final Vector elems = new Vector();

void add(Object x) {
if (lelems.contains(x)) {
elems.add(x);

}
}

}

class Vector {
synchronized void add(Object o) { ... }
synchronized boolean contains(Object o) { ... }

}

CS636 Swarnendu Biswas



What is the desired property?

Q.insert(elem): Q.remove():
atomic { atomic {
while (Q.full()) {} while (Q.empty()) {}
// Add elem to the Q // Return data from Q

} }

CS636 Swarnendu Biswas



Implementing Synchronization Patterns

* Condition synchronization

while — condition
// do nothing (spin)

* Mutual exclusion

lock:bool := false
Lock.acquire(): Lock.release():
while TAS(&lock) lock := false

// spin



Locks (Mutual Exclusion)

public interface Lock { Lock mtx = new LockImpl(..);
public void lock(); .
public void unlock(); mtx.lock();
} try {
.. // body
public class LockImpl } finally {

implements Lock { mtx.unlock():

}

CS636 Swarnendu Biswas



Desired Synchronization Properties

* Mutual exclusion or safety

Critical sections on the same lock from different threads do not overlap

e Livelock freedom

If a lock is available, then some thread should be able to acquire it within
bounded steps.



Desired Synchronization Properties

e Deadlock freedom

If some thread attempts to acquire the lock, then some thread should
be able to acquire the lock

e Starvation freedom

* Every thread that acquires a lock eventually releases it
* Alock acquire request must eventually succeed within bounded
steps



Classic Mutual Exclusion

Al

oorithms




Peterson’s Algorithm

class PetersonLock { public void lock() {
int 1 = ThreadID.get();
static volatile boolean[] flag = int j = 1-1;
new boolean[2]; flag[i] = true;
static volatile 1nt victim; victim = i;
while (flag[j] &5 victim == i) {}
public void unlock() { !
int i = ThreadID.get();
flag[i] = false; 1

}



Peterson’s Algorithm

class PetersonLock { public void lock() {
int 1 = ThreadID.get();
static volatile o -t = 1-1;
new boolean[2]1:
static v Is this algorithm correct under
sequential consistency? victim == i) {}

public voila .

int 1 = ThreadID.geul,,

flag[i] = false; 1
}



What could go wrong?

class TwoThreadLockFlags { public void unlock() {
int i = ThreadID.get();
static volatile boolean[] flag = new flag[i] = false;
boolean[2]; 1
public void lock() f{ !

int 1 = ThreadID.get();

flag[i] = true;

while (flagl[jl) {} // wait
}



What could go wrong?

class TwoThreadLockVolatile { public void unlock() {

}

static volatile int victim;

public void lock() {
int 1 = ThreadID.get();
victim = 1; // wait for the other
while (victim == i) {}



Filter Algorithm

non-CS with n threads level=0
* There are n-1 waiting rooms \ -1 threads / level=1
called “levels”
* One thread gets blocked at each \ /

level if many threads try to enter

\ 2 threads / level=n-2
\ CS / level=n-1




Filter Lock

class FilterLock { public void unlock() {
int me = ThreadID.get();
int[] level; levellmel= 0;
volatile int[] victim; 1

public FilterLock() {
level = new int[n];
victim = new int[n];
for (int i = 0; 1 < n; i++) {
levell[i] = 0;



Filter Lock

public void lock() {

int me = ThreadID.get();

for (int i = 1; 1 < n; i++) {
levellme] = 1; // visit level 1
victim[i] = me; // Thread me is a good guy!
// spin while conflict exits
while ((3k '= me) levell[k] >= i &§& victim[i] == me) {
}



Fairness

e Starvation freedom is good, but maybe threads shouldn’t wait too
much...

* For example, it would be great if we could order threads by the order
in which they performed the first step of the Lock() method



Bounded Waiting

* Divide lock() method into two parts
* Doorway interval (D,) — finishes in finite steps
* Waiting interval (W,) — may take unbounded steps

r-Bounded Waiting

For threads A and B: if D, = Dg/, then CS X = CS.J*"



Lamport’s Bakery Algorithm

class Bakery implements Lock { public Bakery(int n) {
flag = new boolean[n];
boolean[] flag; label = new Labelln];
Label[] label; for (int 1 = @; i<n; i++) {
flag[i] = false;
public void unlock() { label[i] = 0;
flag[ThreadID.get()] = false; }

} }



Lamport’s Bakery Algorithm

(label[i], i) << (label[j], j)) iff label[i] < label[j] or label[i] = label[j] and i < j

public void lock() {

int 1 = ThreadID.get();

flag[i] = true;

label[i] = max(label[@], .., labell[n-1]) + 1;

while ((3k '= i) flag[k] && (labell[k], k) << (labell[i],i)) {}
}



Lamport’s Fast Lock

* Programs with highly contended locks are likely to not scale
* Insight: Ideally spin locks should be free of contention

* |dea
* Two lock fields x and y
* Acquire: Thread t writes its id to x and y and checks for intervening writes



Lamport’s Fast Lock

class LFL implements Lock f{ public void unlock() {
private 1nt x, Vy; y = 1;
boolean[] trying; trying[ThreadID.get()] = false;
}
LFL() {
y = 13

for (int i = 0; i<n; 1i++) {
trying[i] = false;
}



Lamport’s Fast Lock

public void lock() {
int self = ThreadID.get();
start:
trying[self] = true;
X = self;
if (y !'= 1) {
trying[self] = false;
while (y != 1) {} // spin
goto start;

}
y = self;

b}

if (x 1= self) {
trying[self] = false;
for (1 € T) {

}

}

while (trying[i] == true) {
// spin
}

if (y !'= self) {

}

while (y '= L) {} // spin
goto start;



Evaluation Lock Performance

* Lock acquisition latency
e Space overhead
* Fairness

e Bus traffic



Atomic Instructions In

Hardware




Hardware Locks

* Locks can be completely supported by hardware
* Not popular on bus-based machines

* |deas:

* Have a set of lock lines on the bus, processor wanting the lock asserts the
line, others wait, priority circuit used for arbitrating

» Special lock registers, processors wanting the lock acquired ownership of the
registers

* What could be some problems?



Common Atomic (RMW) Primitives

test_and_set [x86, SPARC]
bool TAS(bool* loc):
atomic {
tmp := *xloc;
*loc := true;
return tmp;

}

fetch_and inc [uncommon]
int FAI(int* loc):
atomic {
tmp := xloc;
*loc := tmp+1;
return tmp;

}

swap [Xx86, SPARC]

word Swap(wordx a, word b):
atomic {

tmp := *a;
*a := b;
return tmp;

}

fetch_and add [uncommon]

int FAA(int* loc, int n):
atomic {

tmp := *loc;
*loc := tmp+n;
return tmp;

}



Common Atomic (RMW) Instructions

compare_and_swap x86, |IA-64, SPARC]
bool CAS(word* loc, world old, word new):
atomic {
res := (*loc == old);
if (res)
*loCc := new;

return res,

}



Common Atomic (RMW) Instructions

compare_and_swap x86, |IA-64, SPARC]
bool CAS(word* loc, world old, word new):
atomic {
res := (*loc == old);
if (res)
*loCc := new;
return res;

How can you :

' ?
fetch andjunc() with CAS:



Common Atomic (RMW) Instructions

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word* a, word w):
atomic {
res := (a is remembered, and has not been evicted since LL)
if (res)
*a = W;
return res;

}



Common Atomic (RMW) Instructions

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word+ a. How can you |
atomic { LHWC(
res := (. ert_c\'\___af\d__f
if (res)
*a = W;
return res;

}

mp\emeﬂt
) with LL/SC?

since LL)



ABA Problem

void push(node** top, nodex new): node* pop(node** top):
nodex old nodex old, new
repeat repeat
old := *top old := *top
new->next := old 1f old = null return null

until CAS(top, old, new)
return old

until CAS(top, old, new) new := old->next

(o




ABA Problem

void push(node** top, nodex new):

node*x old
repeat
old := xtop
new->next := old
until CAS(top, old, new)

SR

—t

O

O
—
SERER

node* pop(node** top):

node* old, new

repeat
old := xtop
1f old = null return null
new := old->next

until CAS(top, old, new)
return old

—

Y

—

o

ke
—
SR

)

C

N——

S




ABA Problem

—
\ 4
SR

J

—
\ 4
SR

—
A 4
Y

_
)

(o
o
(w] |
S~

g



Common Atomic (RMW) Instructions

compare_and_swap load_linked/store_conditional
e Cannot detect ABA e Guaranteed to fail

* SC can experience spurious failures
* E.g., Cache miss, branch misprediction

CS636 Swarnendu Biswas

34



Common Atomic (RMW) Instructions

load_linked/store_conditional [POWER, MIPS, ARM]
word LL(word* a):
atomic {
remember a; _
} return > How can you reduce spurious
our fetch_ and_func()
bool St failures In'y ith LL/SC?
atomic |mp\ementat|on Wi
res . -en evicted since LL)
if (res)
*a = W;

return res,;

}



Centralized

Al

Mutual Exclusion
oorithms




Test-And-Set

e Atomically tests and sets a word

* For example, swaps one for zero
and returns the old value

 Java.util.concurrent.Atomi
cBoolean::getAndSet(bool
val)

e Bus traffic?

 Fairness?

bool TAS(bool* loc)
bool res;
atomic {
res = xloc;
*loc = true;
}

return res;

}



Spin Lock with TAS

class SpinLock { public void unlock() {
bool loc = false; loc = false;
¥
public void lock() {
while (TAS(&loc)) { }
// spin
}

}



Test-And-Test-And-Set

* Keep reading the memory location do {
till the location appears unlocked while (TATAS_GET(loc)) {
e Reduces bus traffic — why? }

} while (TAS(loc));



Exponential Backoff

Larger number of unsuccessful retries
- Higher the contention

- Longer backoff
* Possibly double each time till a given maximum



Spin Lock with TAS and Backoff

class SpinLock { public void lock() {
bool loc = false; int backoff = MIN;
const in MIN = ..; while (TAS(&loc)) {
cost int MUL = ..; pause(backoff);
const int MAX = ..; backoff = min(backoff * MUL,
MAX) ;
public void unlock() { }
loc = false; }



Challenges with Exponential Backoff

Larger number of unsuccessful retries
- Higher the contention
- Longer backoff

What can be some
problems with this?



Fairness with TAS and TATAS Locks Q




Ticket Lock

 Grants access to threads based on FCFS
e Uses fetch_and_.inc()

PLEASE

NOW SERVING
Take A

Number

CS636 Swarnendu Biswas 45



Ticket Lock

class TicketLock implements Lock public void lock() {
{ int my_ticket = FAI(&next_ticket);
while (now_serving != my_ticket) {}
int next_ticket = 0; }
int now_serving = 0;
}

public void unlock() {
now_serving++;



Ticket Lock

class TicketLock implements Lock public void lock() {
{ int my_ticket = FAI(&next_ticket);
while (now_serving != my_ticket) {}
int next_ticket = 0; }
int now_serving = 0;
}

public void unlock() {
now_serving++; What are some disadvantages

} of Ticket locks?



Scalable Spin Locks




Queued Locks

* Key idea

* Instead of contending on a single “now_serving” variable, make threads
wait in a queue (i.e., FCFS).
* Each thread knows its order in the queue.

Implementations
* Implement a queue using arrays
e Statically or dynamically allocated depending on the number of threads
e Each thread spins on its own lock (i.e., array element), and knows the
successor information



Queued Lock

public class ArrayLock implements public void lock() {

Lock {. | int slot = FAI(tail);
AtomicInteger taill; mySlot.set(slot);

boolean[] flag; while (!flag[slot]) {}
ThreadLocal<Integer> mySlot = ..; 1

public ArrayLock(int size) {

tail = new AtomicInteger(0);

. int slot = mySlot.get();
flag = new boolean[size]; flag[slot] = false;
flag[0] = true;

} flag[slot+1l] = true;
}

public void unlock() {



Queued Locks

* Key idea

* Instead of contending on a single “now_serving” variable, make threads

wait in a queue.
S Fael dbreed) e What could be a few

disadvantages of array-based

: P
Implementations Queue locks:

* Implement a queue usin, ..uys
e Statically or dynamically allocated depending on the number of threads
e Each thread spins on its own lock (i.e., array element), and knows the
successor information



Queued Locks using Arrays

public class ArrayLock implements public void lock() {

Lock {. | int slot = FAI(tail);
AtomicInteger tail; mySlot.set(slot);

boolean[] flag; while (!flag[slot]) {}
ThreadLocal<Integer> mySlot = ..; 1

public ArrayLock(int size) {
tail = new AtomicInteger(0);

. int slot = mySlot.get();
flag = new boolean[size]; flag[slot] = false;
flag[0] = true;

\ flag[slot+1l] = true;
}

public void unlock() {

CS636 Swarnendu Biswas



MCS Queue Lock

* Proposed by Mellor-Crumney and Scott [1991]

* Uses linked lists instead of arrays

* Space required to support n threads and k locks: O(n+k)
 State-of-art scalable FIFO locks

CS636 Swarnendu Biswas

53



MCS Queue Lock

class QNode {
QNode next;
bool waiting;

}

public class MCSLock implements Lock {
Node tail = null;

ThreadLocal<QNode> myNode = ..;
public void lock() {
QNode node = myNode.get();
QNode prev = swap(tail, node);
if (prev != null)
node.waiting = true;
prev.next = node;
while (node.waiting) {}

public void unlock() {
QNode node = myNode.get();
QNode succ = node.next;
if (succ == null)
if (CAS(tail, node, null))
return;
do {
succ = node.next;
} while (succ == null);
succ.waiting = false;

}



MCS Lock Operations

tail

[ Lock




MCS Lock Operations

{ Lock ]g-
Owns the critical

ta|I \ section

CS636 Swarnen du Biswas

56



MCS Lock Operations el =




MCS Lock Operations




MCS Lock Operat|ons
/ N

<) [ H e ¢ 137
/ N

| S a K ij

s

s




Which Spin Lock should | use?

* Limited use of load-store-only locks

* Limited contention (e.g., few threads)

* TAS spin locks with exponential backoff
* Ticket locks

* High contention
* MCS lock



Miscellaneous Lock

Optimizations




Reentrant Locks

* Alock that can be re-acquired by the Bublic class %hildWidget extends
owner thread arentWidget
* Freed after an equal number of
releases ﬁubl% ?ynchronlzed vold
doWork()

super.doWork();
public class ParentWidget f{

oﬁS?E%C ?ynchron1zed vold 1

}
}



Lazy Initialization In Single-Threaded Context

class Foo {

private Helper helper = null; :
, Correct for single
public Helper getHelper() {

if (helper == null) { thread
helper = new Helper();
}
return helper;
} Lazy initialization

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html



Lazy Initialization In Multithreaded Context

class Foo {

private Helper helper = null;

public Helper getHelper() {
if (helper == null) {
helper = new Helper();
}

return helper;

class Foo {
private Helper helper = null;
public synchronized Helper getHelper() {
if (helper == null) {
helper = new Helper();
}

return helper;

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html



Can we optimize the initialization pattern?

1. Check 1f helper 1s initialized. If yes, return.

2. If no, then obtain a lock.

3. Double check whether the helper has been 1nitialized.
If yes, return.
« Perhaps concurrently 1nitialized 1n between Steps 1
and 2.

4, Initialize helper, and return.



Broken Usage of Double Checked Locking

class Foo {
private Helper helper = null;
public Helper getHelper() {
if (helper == null) {
synchronized (this) {
if (helper == null)
helper = new Helper();
}
}

return helper;

}



One Correct Use of Double Checked Locking

class Foo {
private volatile Helper helper = null;
public Helper getHelper() {
if (helper == null) {
synchronized (this) {
if (helper == null)
helper = new Helper();
}
}

return helper;

}



Reader-Writer Locks

* Many objects are read public interface RWLock {
concurrently public void readerLock();
* Updated only a few times public void readerUnlock();

public void writerLock();
e Reader lock public void writerUnlock();

* No thread holds the write lock }

e Writer lock

* No thread holds the reader or
writer locks



Issues to Consider in Reader-Writer Locks

Design
choices

Release preference
order
Incoming readers

Downgrading

Upgrading

Writer releases lock, both readers
and writers are queued up

Writers waiting, and new readers
are arriving

Can a thread acquire a read lock
without releasing the write lock?

Can a read lock be upgraded to a
write lock?



Reader-Writer Locks

e Reader or writer preference readerUnlock():
* Allows starvation of non-preferred acquire(rd)
threads rdrs--
1f rdrs ==
release(wr)
release(rd)

readerLock():
acquire(rd)
rdrs++
1f rdrs ==
acquire(wr)
release(rd)

writerLock():
acquire(wr)

writerUnlock():
release(wr)



Reader-Writer Lock With Reader-Preference

class RWLock f{ public void writerUnlock() {
int n = 0; FAA(&n, -WR_MASK);
const int WR_MASK = 1; }

const int RD_INC = 2;
public void readerLock() {

public void writerLock() { FAA(&n, RD_INC);
while (= CAS(sn, 0, WR_MASK)) { while ((n & WR_MASK) == 1) {
} }
} }
}

public void readerUnlock() {
FAA(&6n, -RD_INC);
}



Asymmetric Locks

» Often objects are locked by at most one thread

e Biased locks

* JVMs use biased locks, the acquire/release operations on the owner threads
are cheaper

e Usually biased to the first owner thread

* Synchronize only when the lock is contended, need to take care of several
subtle issues

« -XX:+UseBiasedLocking in HotSpot JVM

https://blogs.oracle.com/dave/biased-locking-in-hotspot



Monitors

Swarnendu Biswas




Using Locks to Access a Bounded Queue

* Suppose | have a bounded FIFO mutex.lock();
queue try {

* Many producer threads and one queue.enq(x);
consumer thread access the } finally {
queue mutex.unlock();

}



Using Locks to Access a Bounded Queue

e Suppose | have a bounded FIFO
queue

* Many producer threads and one
consumer thread access the
gueue

What could be
some problems?

mutex.lock();
try {

}

}

queue.enq(x);
finally {
mutex.unlock();



Monitors to the Rescue!

* Combination of methods, public synchronized void enque() {
mutual exclusion locks and queue.enq(x);
condition variables }

* Provides mutual exclusion for
methods

* Provides the possibility to wait
for a condition (cooperation)

CS636 Swarnendu Biswas 79



Condition Variables in Monitors

* Have an associated queue

* Operations
e wait
* notify (signal)
* notifyAll (broadcast)

CS636 Swarnendu Biswas

80



Condition Variable Operations

wait var, mutex

e Make the thread wait until a condition COND is true
e Releases the monior’s mutex
e Moves the thread to var’s wait queue
e Puts the thread to sleep
e Steps 1-3 are atomic to prevent race conditions
e When the thread wakes up, it is assumed to hold mutex

CS636 Swarnendu Biswas 81



Condition Variable Operations

e Invoked by a thread to assert that COND is true

e Moves one or more threads from the wait queue to the
ready queue

notifyAll var

e Moves all threads from wait queue to the ready queue

CS636 Swarnen du Biswas 82



Sighaling Policies

4 N
Signal and Signaler thread holds the lock. Java implements SC
continue (SC) |only.
4 N
Signal and wait |Signaler thread needs to reacquire the lock, signaled
(SW) thread can continue execution
4 N

Signal qnd urgent |Like SW, but signaler thread gets to go after the
wait (SU) signaled thread

4 )
Signal and exit |Signaler exits, signaled thread can continue
(SX) execution.




Using Monitors

* Have an associated queue acquire(mutex)
while (!'COND) {

wait(var, mutex)

}

* Operations
* wait
* notify (signal)

* notifyAll (broadcast) /* CRITICAL SECTION =/

notify(var)/notifyAll(var)
release(mutex)

CS636 Swarnendu Biswas



Producer-Consumer with Monitors

ueue q:
Q q; consumer:

Mutex mtx; // Has associated queue while true:

CondVar empty, full; acquire(mtx)

while q.isEmpty():
prosgier. wait(empty, mtx);
while true:

data = q.deq();
notify(full);

release(mtx);

data = new Data(..);

acquire(mtx);

while g.isFull():
wait(full, mtx);

q.enq(data);

notify(empty);

release(mtx);



Contrast with Producer-Consumer with Spin
Locks

Queue (; consumer:
Mutex mtx; while true:
acquire(mtx);
producer: while q.isEmpty():
while true: release(mtx);
data = new Data(..);
acquire(mtx); acquire(mtx);
while g.isFull(): data = q.deq();
release(mtx); release(mtx);

acquire(mtx);
q.enq(data);
release(mtx);



Semaphore Implementation with Monitors

1int numRes = N; V:

Mutex mtx; acquire(mtx);

CondVar zero; numRes++;
notify(zero);

P release(mtx);

acquire(mtx);
while numRes ==
wait(zero, mtx);
assert numRes > 0
numRes--;
release(mtx);



Reader-Writer Locks with Reader-Preference

e Reader or writer preference
* Allows starvation of non-preferred

threads

readerLock():
acquire(rd)
rdrs++
1f rdrs ==
acquire(wr)
release(rd)

readerUntlock():
acquire(rd)
rdrs--
1f rdrs ==
release(wr)
release(rd)

writerLock():
acquire(wr)

writerUnlock():
release(wr)



Reader-Writer Locks

— >

How can we construct a Reader-
Writer lock with writer-preference?

S AT




Monitors in Java

* Java provides built-in support for The Owner
. Entry Set Wait Set
monitors
» synchronized blocks and methods {5 O o ""“ﬂi-’o O
* wait(), notify(), and notifyAll() O O i O Q
* Each object can be used as a it ()
monitor /

O A Waiting Thread

An Active Thread

https://www.artima.com/insidejvm/ed2/threadsynch.html

CS636 Swarnendu Biswas 91



Bounded Buffer with Monitors in Java

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class BoundedBuffer {
private final String[] buffer;
private final int capacity; // Constant, length of buffer
private int count; // Current size
private final Lock lock = new ReentrantLock();
private final Condition full = new Condition();
private final Condition empty = new Condition();



Bounded Buffer with Monitors in Java

public void addToBuffer() .. {

lock.lock();
try {
while (count ==
full.await();

empty.signal();
} finally {
lock.unlock();

}
}

CS636

capacity)

public void removeFromBuffer() ..

}
}

Swarnendu Biswas

lock.lock();

try {
while (count == 0)
empty.await();

full.signal();
} finally {
lock.unlock();

}

93



References

* Michael Scott. Shared Memory Synchronization. Morgan and Claypool Publishers.
e M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers.

* B. Goetz et al. Java Concurrency in Practice. Pearson.



