
CS636: Shared Memory 
Synchronization

Swarnendu Biswas

Semester 2018-2019-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.



What is the desired property?
class Set {

final Vector elems = new Vector();

void add(Object x) {
if (!elems.contains(x)) {

elems.add(x);
}

}

}

class Vector {
synchronized void add(Object o) { ... }
synchronized boolean contains(Object o) { ... }

}

CS636 Swarnendu Biswas 2



What is the desired property?

Q.insert(elem):
atomic {

while (Q.full()) {}
// Add elem to the Q

}

Q.remove():
atomic {

while (Q.empty()) {}
// Return data from Q

}

CS636 Swarnendu Biswas 3



Implementing Synchronization Patterns

• Condition synchronization

• Mutual exclusion

CS636 Swarnendu Biswas 4

while ¬ condition
// do nothing (spin)

Lock.acquire():
while TAS(&lock)

// spin

Lock.release():
lock := false

lock:bool := false



Locks (Mutual Exclusion)

public interface Lock {
public void lock();
public void unlock();

}

public class LockImpl
implements Lock {

…
…

}

Lock mtx = new LockImpl(…);
…
mtx.lock();
try {

… // body
} finally {

mtx.unlock();
}

CS636 Swarnendu Biswas 5



Desired Synchronization Properties

• Mutual exclusion or safety

• Livelock freedom

CS636 Swarnendu Biswas 6

Critical sections on the same lock from different threads do not overlap

If a lock is available, then some thread should be able to acquire it within 
bounded steps.



Desired Synchronization Properties

• Deadlock freedom

• Starvation freedom

CS636 Swarnendu Biswas 7

• Every thread that acquires a lock eventually releases it
• A lock acquire request must eventually succeed within bounded

steps

If some thread attempts to acquire the lock, then some thread should 
be able to acquire the lock



Classic Mutual Exclusion 
Algorithms

CS636 Swarnendu Biswas 8



Peterson’s Algorithm

class PetersonLock {

static volatile boolean[] flag = 
new boolean[2];

static volatile int victim;

public void unlock() {

int i = ThreadID.get();

flag[i] = false;

}

public void lock() {

int i = ThreadID.get();

int j = 1-i;

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {}

}

}

CS636 Swarnendu Biswas 9



Peterson’s Algorithm

class PetersonLock {

static volatile boolean[] flag = 
new boolean[2];

static volatile int victim;

public void unlock() {

int i = ThreadID.get();

flag[i] = false;

}

public void lock() {

int i = ThreadID.get();

int j = 1-i;

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {}

}

}

CS636 Swarnendu Biswas 10

Is this algorithm correct under 
sequential consistency?



What could go wrong?

class TwoThreadLockFlags {

static volatile boolean[] flag = new 
boolean[2];

public void lock() {

int i = ThreadID.get();

flag[i] = true;

while (flag[j]) {} // wait 

}

public void unlock() {

int i = ThreadID.get();

flag[i] = false;

}

}

CS636 Swarnendu Biswas 11



What could go wrong?

class TwoThreadLockVolatile {

static volatile int victim;

public void lock() {

int i = ThreadID.get();

victim = i; // wait for the other

while (victim == i) {} 

}

public void unlock() {

}

}

CS636 Swarnendu Biswas 12



Filter Algorithm

• There are n-1 waiting rooms 
called “levels”

• One thread gets blocked at each 
level if many threads try to enter

CS636 Swarnendu Biswas 13

level=0

level=1

level=n-1

level=n-2

non-CS with n threads

CS

2 threads

n-1 threads



Filter Lock
class FilterLock {

int[] level;

volatile int[] victim;

public FilterLock() {

level = new int[n];

victim = new int[n];

for (int i = 0; i < n; i++) {

level[i] = 0;

}

}

public void unlock() {

int me = ThreadID.get();

level[me]= 0;

}

CS636 Swarnendu Biswas 14



Filter Lock

public void lock() {

int me = ThreadID.get();

for (int i = 1; i < n; i++) {

level[me] = i; // visit level i

victim[i] = me; // Thread me is a good guy!

// spin while conflict exits

while ((∃k != me) level[k] >= i && victim[i] == me) {

}

}

}

}
CS636 Swarnendu Biswas 15



Fairness

• Starvation freedom is good, but maybe threads shouldn’t wait too 
much… 

• For example, it would be great if we could order threads by the order 
in which they performed the first step of the lock() method

CS636 Swarnendu Biswas 16



Bounded Waiting

• Divide lock() method into two parts
• Doorway interval (DA) – finishes in finite steps

• Waiting interval (WA) – may take unbounded steps

CS636 Swarnendu Biswas 17

r-Bounded Waiting

For threads A and B: if DA
k
 DB

j, then CSA
k
 CSB

j+r



Lamport’s Bakery Algorithm

class Bakery implements Lock {

boolean[] flag;

Label[] label;

public void unlock() {

flag[ThreadID.get()] = false;

}

public Bakery(int n) {

flag = new boolean[n];

label = new Label[n];

for (int i = 0; i<n; i++) {

flag[i] = false;

label[i] = 0;

}

}

CS636 Swarnendu Biswas 18



Lamport’s Bakery Algorithm

public void lock() {
int i = ThreadID.get();
flag[i] = true;
label[i] = max(label[0], …, label[n-1]) + 1;
while ((∃k != i) flag[k] && (label[k], k) << (label[i],i)) {}

}

}

CS636 Swarnendu Biswas 19

(label[i], i) << (label[j], j)) iff label[i] < label[j] or label[i] = label[j] and i < j



Lamport’s Fast Lock

• Programs with highly contended locks are likely to not scale

• Insight: Ideally spin locks should be free of contention

• Idea
• Two lock fields x and y

• Acquire: Thread t writes its id to x and y and checks for intervening writes

CS636 Swarnendu Biswas 20



Lamport’s Fast Lock

class LFL implements Lock {

private int x, y;

boolean[] trying;

LFL() {

y = ⊥;

for (int i = 0; i<n; i++) {

trying[i] = false;

} 

}

public void unlock() {

y = ⊥;

trying[ThreadID.get()] = false;

}

CS636 Swarnendu Biswas 21



Lamport’s Fast Lock
public void lock() {
int self = ThreadID.get();
start:
trying[self] = true;
x = self;
if (y != ⊥) {
trying[self] = false;
while (y != ⊥) {} // spin
goto start;

}
y = self;

if (x != self) {
trying[self] = false;
for (i ∈ T) {
while (trying[i] == true) {
// spin

}
}
if (y != self) {
while (y != ⊥) {} // spin
goto start;

} 
}

}}

CS636 Swarnendu Biswas 22



Evaluation Lock Performance

• Lock acquisition latency

• Space overhead

• Fairness

• Bus traffic

CS636 Swarnendu Biswas 23



Atomic Instructions in 
Hardware

CS636 Swarnendu Biswas 24



Hardware Locks

• Locks can be completely supported by hardware
• Not popular on bus-based machines

• Ideas:
• Have a set of lock lines on the bus, processor wanting the lock asserts the 

line, others wait, priority circuit used for arbitrating

• Special lock registers, processors wanting the lock acquired ownership of the 
registers

• What could be some problems?

CS636 Swarnendu Biswas 25



Common Atomic (RMW) Primitives

CS636 Swarnendu Biswas 26

test_and_set [x86, SPARC]

bool TAS(bool* loc):
atomic {
tmp := *loc;
*loc := true;
return tmp;

}

swap                               [x86, SPARC]

word Swap(word* a, word b):
atomic {
tmp := *a;
*a := b;
return tmp;

}

fetch_and_inc [uncommon]

int FAI(int* loc):
atomic {
tmp := *loc;
*loc := tmp+1;
return tmp;

}

fetch_and_add [uncommon]

int FAA(int* loc, int n):
atomic {
tmp := *loc;
*loc := tmp+n;
return tmp;

}



Common Atomic (RMW) Instructions

CS636 Swarnendu Biswas 27

compare_and_swap [x86, IA-64, SPARC]

bool CAS(word* loc, world old, word new):
atomic {
res := (*loc == old);
if (res)
*loc := new;

return res;
}



Common Atomic (RMW) Instructions

CS636 Swarnendu Biswas 28

compare_and_swap [x86, IA-64, SPARC]

bool CAS(word* loc, world old, word new):
atomic {
res := (*loc == old);
if (res)
*loc := new;

return res;
}



Common Atomic (RMW) Instructions

CS636 Swarnendu Biswas 29

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word* a, word w):
atomic {
res := (a is remembered, and has not been evicted since LL)
if (res)
*a = w;

return res;
}



Common Atomic (RMW) Instructions

CS636 Swarnendu Biswas 30

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word* a, word w):
atomic {
res := (a is remembered, and has not been evicted since LL)
if (res)
*a = w;

return res;
}



ABA Problem
void push(node** top, node* new):

node* old

repeat

old := *top

new->next := old

until CAS(top, old, new)

node* pop(node** top):

node* old, new

repeat

old := *top

if old = null return null

new := old->next

until CAS(top, old, new)

return old

CS636 Swarnendu Biswas 31

top A C



ABA Problem
void push(node** top, node* new):

node* old

repeat

old := *top

new->next := old

until CAS(top, old, new)

node* pop(node** top):

node* old, new

repeat

old := *top

if old = null return null

new := old->next

until CAS(top, old, new)

return old

CS636 Swarnendu Biswas 32

top A C

top A B C



ABA Problem
void push(node** top, node* new):

node* old

repeat

old := *top

new->next := old

until CAS(top, old, new)

node* pop(node** top):

node* old, new

repeat

old := *top

if old = null return null

new := old->next

until CAS(top, old, new)

return old

CS636 Swarnendu Biswas 33

top A C

top A B C

top B C



Common Atomic (RMW) Instructions

compare_and_swap
• Cannot detect ABA

load_linked/store_conditional
• Guaranteed to fail

• SC can experience spurious failures
• E.g., Cache miss, branch misprediction

CS636 Swarnendu Biswas 34



Common Atomic (RMW) Instructions

CS636 Swarnendu Biswas 35

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word* a, word w):
atomic {
res := (a is remembered, and has not been evicted since LL)
if (res)
*a = w;

return res;
}



Centralized Mutual Exclusion 
Algorithms

CS636 Swarnendu Biswas 36



Test-And-Set

• Atomically tests and sets a word
• For example, swaps one for zero 

and returns the old value

• java.util.concurrent.Atomi
cBoolean::getAndSet(bool 
val)

• Bus traffic?

• Fairness?

bool TAS(bool* loc) {

bool res; 

atomic {

res = *loc;

*loc = true;

}

return res;

}

CS636 Swarnendu Biswas 37



Spin Lock with TAS

class SpinLock {

bool loc = false;

public void lock() {

while (TAS(&loc)) {

// spin

}

}

public void unlock() {

loc = false;

}

}

CS636 Swarnendu Biswas 38



Test-And-Test-And-Set

• Keep reading the memory location 
till the location appears unlocked
• Reduces bus traffic – why?

do {

while (TATAS_GET(loc)) {

}

} while (TAS(loc));

CS636 Swarnendu Biswas 39



Exponential Backoff

CS636 Swarnendu Biswas 40

Larger number of unsuccessful retries 
 Higher the contention 
 Longer backoff

• Possibly double each time till a given maximum



Spin Lock with TAS and Backoff

class SpinLock {

bool loc = false;

const in MIN = …;

cost int MUL = …;

const int MAX = …;

public void unlock() {

loc = false;

}

public void lock() {

int backoff = MIN;

while (TAS(&loc)) {

pause(backoff);

backoff = min(backoff * MUL,  

MAX);

}

}

}

CS636 Swarnendu Biswas 41



Challenges with Exponential Backoff

CS636 Swarnendu Biswas 42

Larger number of unsuccessful retries 
 Higher the contention 
 Longer backoff

What can be some 
problems with this?



Fairness with TAS and TATAS Locks

CS636 Swarnendu Biswas 44



Ticket Lock

• Grants access to threads based on FCFS

• Uses fetch_and_inc()

CS636 Swarnendu Biswas 45



Ticket Lock

class TicketLock implements Lock 
{

int next_ticket = 0;

int now_serving = 0;

public void unlock() {

now_serving++;

}

public void lock() {

int my_ticket = FAI(&next_ticket);

while (now_serving != my_ticket) {}

}

}

CS636 Swarnendu Biswas 46



Ticket Lock

class TicketLock implements Lock 
{

int next_ticket = 0;

int now_serving = 0;

public void unlock() {

now_serving++;

}

public void lock() {

int my_ticket = FAI(&next_ticket);

while (now_serving != my_ticket) {}

}

}

CS636 Swarnendu Biswas 47

What are some disadvantages 
of Ticket locks?



Scalable Spin Locks

CS636 Swarnendu Biswas 48



Queued Locks

• Key idea

CS636 Swarnendu Biswas 49

• Instead of contending on a single “now_serving” variable, make threads 
wait in a queue (i.e., FCFS). 

• Each thread knows its order in the queue.

Implementations
• Implement a queue using arrays

• Statically or dynamically allocated depending on the number of threads 
• Each thread spins on its own lock (i.e., array element), and knows the 

successor information



Queued Lock

public class ArrayLock implements 
Lock {

AtomicInteger tail;
boolean[] flag;
ThreadLocal<Integer> mySlot = …;

public ArrayLock(int size) {
tail = new AtomicInteger(0);
flag = new boolean[size];
flag[0] = true;

}

public void lock() {
int slot = FAI(tail);
mySlot.set(slot);
while (!flag[slot]) {}

}

public void unlock() {
int slot = mySlot.get();
flag[slot] = false;
flag[slot+1] = true;

}
}

CS636 Swarnendu Biswas 50



Queued Locks

• Key idea

CS636 Swarnendu Biswas 51

• Instead of contending on a single “now_serving” variable, make threads 
wait in a queue. 

• Each thread knows its order in the queue.

Implementations
• Implement a queue using arrays

• Statically or dynamically allocated depending on the number of threads 
• Each thread spins on its own lock (i.e., array element), and knows the 

successor information

What could be a few 
disadvantages of array-based 

Queue locks?



Queued Locks using Arrays

public class ArrayLock implements 
Lock {

AtomicInteger tail;
boolean[] flag;
ThreadLocal<Integer> mySlot = …;

public ArrayLock(int size) {
tail = new AtomicInteger(0);
flag = new boolean[size];
flag[0] = true;

}

public void lock() {
int slot = FAI(tail);
mySlot.set(slot);
while (!flag[slot]) {}

}

public void unlock() {
int slot = mySlot.get();
flag[slot] = false;
flag[slot+1] = true;

}
}

CS636 Swarnendu Biswas 52



MCS Queue Lock

• Proposed by Mellor-Crumney and Scott [1991]

• Uses linked lists instead of arrays

• Space required to support n threads and k locks: O(n+k)

• State-of-art scalable FIFO locks

CS636 Swarnendu Biswas 53



MCS Queue Lock
class QNode {
QNode next;
bool waiting;

}
public class MCSLock implements Lock {
Node tail = null;
ThreadLocal<QNode> myNode = …;

public void lock() {
QNode node = myNode.get(); 
QNode prev = swap(tail, node);
if (prev != null) 

node.waiting = true;
prev.next = node;
while (node.waiting) {}

}

public void unlock() {
QNode node = myNode.get();
QNode succ = node.next;
if (succ == null)

if (CAS(tail, node, null)) 
return;

do {
succ = node.next;

} while (succ == null); 
succ.waiting = false;

}
}

CS636 Swarnendu Biswas 54



MCS Lock Operations

CS636 Swarnendu Biswas 55

Lock
tail



MCS Lock Operations

CS636 Swarnendu Biswas 56

Lock

ALock

tail

Owns the critical 
section



MCS Lock Operations

CS636 Swarnendu Biswas 57

Lock

ALock

tail

tail

BLock A



MCS Lock Operations

CS636 Swarnendu Biswas 58

tail

CLock A B



MCS Lock Operations

CS636 Swarnendu Biswas 59

tail

CLock A B

tail

CLock B



Which Spin Lock should I use?

• Limited use of load-store-only locks

• Limited contention (e.g., few threads)
• TAS spin locks with exponential backoff

• Ticket locks

• High contention
• MCS lock

CS636 Swarnendu Biswas 62



Miscellaneous Lock 
Optimizations

CS636 Swarnendu Biswas 63



Reentrant Locks

• A lock that can be re-acquired by the 
owner thread

• Freed after an equal number of 
releases

public class ParentWidget {

public synchronized void 
doWork() {

…
}

}

public class ChildWidget extends 
ParentWidget {

public synchronized void 
doWork() {

…
super.doWork();
…

}
}

CS636 Swarnendu Biswas 64



Lazy Initialization In Single-Threaded Context

class Foo {

private Helper helper = null;

public Helper getHelper() {

if (helper == null) {

helper = new Helper();

}

return helper;

}

…

}

CS636 Swarnendu Biswas 65

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Lazy initialization

Correct for single 
thread



Lazy Initialization In Multithreaded Context

class Foo {

private Helper helper = null;

public Helper getHelper() {

if (helper == null) {

helper = new Helper();

}

return helper;

}

…

}

class Foo {

private Helper helper = null;

public synchronized Helper getHelper() {

if (helper == null) {

helper = new Helper();

}

return helper;

}

…

}

CS636 Swarnendu Biswas 66

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html



Can we optimize the initialization pattern?

1. Check if helper is initialized. If yes, return.
2. If no, then obtain a lock.

3. Double check whether the helper has been initialized. 
If yes, return.
• Perhaps concurrently initialized in between Steps 1 
and 2.

4. Initialize helper, and return.

CS636 Swarnendu Biswas 67



Broken Usage of Double Checked Locking

class Foo {

private Helper helper = null;

public Helper getHelper() {

if (helper == null) {

synchronized (this) {

if (helper == null) 

helper = new Helper();

}

}

return helper;

}

…

}

CS636 Swarnendu Biswas 68



One Correct Use of Double Checked Locking

class Foo {

private volatile Helper helper = null;

public Helper getHelper() {

if (helper == null) {

synchronized (this) {

if (helper == null) 

helper = new Helper();

}

}

return helper;

}

…

}

CS636 Swarnendu Biswas 69



Reader-Writer Locks

• Many objects are read 
concurrently 
• Updated only a few times 

• Reader lock 
• No thread holds the write lock

• Writer lock
• No thread holds the reader or 

writer locks

public interface RWLock {
public void readerLock();
public void readerUnlock();

public void writerLock();
public void writerUnlock();

}

CS636 Swarnendu Biswas 70



Issues to Consider in Reader-Writer Locks

CS636 Swarnendu Biswas 71

Design 
choices

Release preference 
order

Writer releases lock, both readers 
and writers are queued up

Incoming readers Writers waiting, and new readers 
are arriving

Downgrading Can a thread acquire a read lock 
without releasing the write lock?

Upgrading Can a read lock be upgraded to a 
write lock?



Reader-Writer Locks

• Reader or writer preference
• Allows starvation of non-preferred 

threads

readerLock():
acquire(rd)
rdrs++
if rdrs == 1:

acquire(wr)
release(rd)

readerUnlock():

acquire(rd)

rdrs--

if rdrs == 0:

release(wr)

release(rd)

writerLock():

acquire(wr)

writerUnlock():

release(wr)

CS636 Swarnendu Biswas 72



Reader-Writer Lock With Reader-Preference

class RWLock {

int n = 0;

const int WR_MASK = 1;

const int RD_INC = 2;

public void writerLock() {

while (¬ CAS(&n, 0, WR_MASK)) {

}

}

}

public void writerUnlock() {

FAA(&n, -WR_MASK);

} 

public void readerLock() {

FAA(&n, RD_INC);

while ((n & WR_MASK) == 1) {

}

}

public void readerUnlock() {

FAA(&n, -RD_INC);

} 

CS636 Swarnendu Biswas 73



Asymmetric Locks

• Often objects are locked by at most one thread

• Biased locks
• JVMs use biased locks, the acquire/release operations on the owner threads 

are cheaper
• Usually biased to the first owner thread

• Synchronize only when the lock is contended, need to take care of several 
subtle issues

• -XX:+UseBiasedLocking in HotSpot JVM

CS636 Swarnendu Biswas 74

https://blogs.oracle.com/dave/biased-locking-in-hotspot



Monitors

CS636 Swarnendu Biswas 76



Using Locks to Access a Bounded Queue

• Suppose I have a bounded FIFO 
queue

• Many producer  threads and one 
consumer thread access the 
queue 

mutex.lock();
try {

queue.enq(x);
} finally {
mutex.unlock();

}

CS636 Swarnendu Biswas 77



Using Locks to Access a Bounded Queue

• Suppose I have a bounded FIFO 
queue

• Many producer  threads and one 
consumer thread access the 
queue 

mutex.lock();
try {

queue.enq(x);
} finally {
mutex.unlock();

}

CS636 Swarnendu Biswas 78

What could be 
some problems?



Monitors to the Rescue!

• Combination of methods, 
mutual exclusion locks and 
condition variables

• Provides mutual exclusion for 
methods 

• Provides the possibility to wait 
for a condition (cooperation)

public synchronized void enque() {

queue.enq(x);

}

CS636 Swarnendu Biswas 79



Condition Variables in Monitors

• Have an associated queue

• Operations
• wait

• notify (signal)

• notifyAll (broadcast)

CS636 Swarnendu Biswas 80



Condition Variable Operations

wait var, mutex

• Make the thread wait until a condition COND is true

• Releases the monior’s mutex 

• Moves the thread to var’s wait queue

• Puts the thread to sleep

• Steps 1-3 are atomic to prevent race conditions

• When the thread wakes up, it is assumed to hold mutex

CS636 Swarnendu Biswas 81



Condition Variable Operations

notify var

• Invoked by a thread to assert that COND is true

• Moves one or more threads from the wait queue to the 
ready queue

notifyAll var

• Moves all threads from wait queue to the ready queue

CS636 Swarnendu Biswas 82



Signaling Policies

Signaler thread holds the lock. Java implements SC 
only.

Signal and 
continue (SC) 

Signaler thread needs to reacquire the lock, signaled 
thread can continue execution 

Signal and wait 
(SW)

Like SW, but signaler thread gets to go after the 
signaled thread

Signal and urgent 
wait (SU)

Signaler exits, signaled thread can continue 
execution.

Signal and exit 
(SX)

CS636 Swarnendu Biswas 83



Using Monitors

• Have an associated queue

• Operations
• wait

• notify (signal)

• notifyAll (broadcast)

acquire(mutex)

while (!COND) {

wait(var, mutex)

}

…

/* CRITICAL SECTION */

…

notify(var)/notifyAll(var)

release(mutex)

CS636 Swarnendu Biswas 84



Producer-Consumer with Monitors
Queue q;

Mutex mtx; // Has associated queue

CondVar empty, full;

producer:

while true:

data = new Data(…);

acquire(mtx);

while q.isFull():

wait(full, mtx);

q.enq(data);

notify(empty);

release(mtx);

consumer:

while true:

acquire(mtx)

while q.isEmpty():

wait(empty, mtx);

data = q.deq();

notify(full);

release(mtx);

…

…

CS636 Swarnendu Biswas 85



Contrast with Producer-Consumer with Spin 
Locks
Queue q;

Mutex mtx; 

producer:

while true:

data = new Data(…);

acquire(mtx);

while q.isFull():

release(mtx);

…

acquire(mtx);

q.enq(data);

release(mtx);

consumer:

while true:

acquire(mtx);

while q.isEmpty():

release(mtx);

…

acquire(mtx);

data = q.deq();

release(mtx);

…

…

CS636 Swarnendu Biswas 86



Semaphore Implementation with Monitors

int numRes = N;
Mutex mtx; 
CondVar zero;

P:
acquire(mtx);
while numRes == 0:
wait(zero, mtx);

assert numRes > 0
numRes--;
release(mtx);

V: 
acquire(mtx);
numRes++;
notify(zero);
release(mtx);

CS636 Swarnendu Biswas 87



Reader-Writer Locks with Reader-Preference

• Reader or writer preference
• Allows starvation of non-preferred 

threads

readerLock():
acquire(rd)
rdrs++
if rdrs == 1:

acquire(wr)
release(rd)

readerUnlock():

acquire(rd)

rdrs--

if rdrs == 0:

release(wr)

release(rd)

writerLock():

acquire(wr)

writerUnlock():

release(wr)

CS636 Swarnendu Biswas 88



Reader-Writer Locks

• Reader or writer preference
• Allows starvation of non-preferred 

threads

readerLock():
acquire(rd)
rdrs++
if rdrs == 1:

acquire(wr)
release(rd)

readerUnlock():

acquire(rd)

rdrs--

if rdrs == 0:

release(wr)

release(rd)

writerLock():

acquire(wr)

writerUnlock():

release(wr)

CS636 Swarnendu Biswas 89

How can we construct a Reader-
Writer lock with writer-preference?



Monitors in Java

• Java provides built-in support for 
monitors 
• synchronized blocks and methods

• wait(), notify(), and notifyAll()

• Each object can be used as a 
monitor

CS636 Swarnendu Biswas 91

https://www.artima.com/insidejvm/ed2/threadsynch.html



Bounded Buffer with Monitors in Java

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class BoundedBuffer {
private final String[] buffer;
private final int capacity; // Constant, length of buffer
private int count; // Current size
private final Lock lock = new ReentrantLock();
private final Condition full = new Condition();
private final Condition empty = new Condition();

CS636 Swarnendu Biswas 92



Bounded Buffer with Monitors in Java

public void addToBuffer() … {
lock.lock();
try {

while (count == capacity)
full.await();

…
…
empty.signal();  

} finally {
lock.unlock();

}
}

public void removeFromBuffer() … {
lock.lock();
try {

while (count == 0) 
empty.await();

…
…
full.signal();

} finally {
lock.unlock();

}
}

}

CS636 Swarnendu Biswas 93



References

• Michael Scott. Shared Memory Synchronization. Morgan and Claypool Publishers.

• M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers.

• B. Goetz et al. Java Concurrency in Practice. Pearson.

CS636 Swarnendu Biswas 103


